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ABSTRACT

In 1961, Sperling linearized and regularized the differential equations of motion
of the two-body problem by changing the independent variable from time to fictitious

time by Sundman’s transformation (r = g—;—) and by embedding the two-body energy

integral and the Laplace vector. In 1968, Burdet developed a perturbation theory
which was uniformly valid for all types of orbits using a variation of parameters
approach on the elements which appeared in Sperling’s equations for the two-body
solution. In 1973, Bond and Hanssen improved Burdet’s set of differential equations
by embedding the total energy (which is a constant when the potential function is
explicitly dependent upon time.) The Jacobian constant was used as an element to
replace the total energy in a reformulation of the differential equations of motion. In
the process, another element which is proportional to a component of the angular
momentum was introduced.

Recently trajectories computed during numerical studies of atmospheric entry from cir-
cular orbits and low thrust beginning in near-circular orbits exhibited numerical insta-
bility when solved by the method of Bond and Gottlieb (1989) for long time intervals.
It was found that this instability was due to secular terms which appear on the right-
hand sides of the differential equations of some of the elements. In this paper, this
instability is removed by the introduction of another vector integral called the delta
integral (which replaces the Laplace Vector) and another scalar integral which remove
the secular terms. The introduction of these integrals requires a new derivation of the
differential equations for most of the elements. For this rederivation, the Lagrange
method of variation of parameters is used making the development more concise.
Numerical examples of this improvement will be presented.

This work was performed for NASA-JSC Houston, Texas under Contract No. NAS9-
17885.
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1.0 Summary

In 1961 Sperling linearized and regularized therdiftr'ercntial equations of motion of the two-body prob-
lem by changing the independent variable from time to fictitious time by Sundman’s transformation

r = g—;—) and by embedding the two-body energy integral and the Laplace vector which is also an

integral of the motion into the Newtonian form of the differential equations of motion. The solution of
Sperling’s differential equations was uniformly valid for all types of orbits. In 1968, Burdet developed
a perturbation theory using a variation of parameters approach on the 14 elements which appeared in
the two-body solution. In 1973, Bond and Hanssen improved Burdet’s set of differential equations by
using the total energy of the perturbed system as a parameter instead of the two-body energy and by
reducing the number of elements to 13. In 1989 Bond and Gottlieb embedded the Jacobian integral,
which is a constant when the potential function is explicitly dependent upon time as well as position in
the Newtonian equations. The Jacobian constant was used as an element to replace the total energy in
a reformulation of the differential equations of motion. In this process, another element which is pro-
portional 0 a component of the angular momentum is introduced. This brought the total number of
elements back to 14. In this paper the Laplace vector is replaced by another vector integral as well as
another scalar integral which remove small secular terms which appear in the differential equations for
some of the elements,

2.0 Introduction

The non-linear differential equations of motion for the cartesian coordinates of the two-body problem
can be regularized and lincarized by the three-step procedure of changing the independent variable form
time (1) to fictitious time (s) by the application of the Sundman transformation, embedding the Laplace
integral and embedding the Jacobian integral.

By regularization we mean the removal of all singularities, and by linearization we mean that the
differential equations for the cartesian coordinates are transformed to harmonic oscillators. Previously,
regularization and linearization were done by Burdet (1968) by embedding the two-body energy which
is constant only for the two-body problem and by Bond and Hanssen (1973) by embedding the total
energy which is a constant when the two-body system is perturbed by a conservative potential (function
of position only). In Bond and Gottlicb (1989), the Jacobian integral, which is a constant for the case
of the two-body system perturbed by a potential function that is explicitly dependent on time as well as
position, was embedded in the Newtonian equations. All three of these approaches reduce to the same
system of equations in the absence of perturbations.

Recent numerical studies on atmospheric entry from near circular orbits and on low thrust in near circu-
lar orbits exhibit numerical instability when solved by the method of Bond and Gotdieb (1989) for long
time intervals. These two cases are similar since both have persisient, tangential, non-conservative per-
turbations. It was found that this instability was due to secular terms which appear on the right hand
sides of the differential equations of some of the elements. In this paper this instability is removed by
the introduction of another vector integral of the motion and another scalar integral which remove the
secular terms. The introduction of these integrals which were included by Burdet (1968) require a new
derivation of the differential equations for most of the elements. For this rederivation the Lagrange
mcthod of variation of parameters is used making the development more concise.

2.1 The Differential Equations of Motion in the Fictitious Time

The differential equation for perturbed two-body motion is
F+Er=F - @2.1)
Ival=C

where r is the position vector of one of the masses with respect to the other in cartesian coordinates

and r is the magnitude of r and ( ") = éd%z Also the gravitational constant is
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U=GM +m) 2.2)

where G is the universal gravitational constant and M and m are the masses of the two bodies. The
quantity F is the perturbation which can be expressed by,

-p_9
E=B-3V(L0 @3)

where V(r, t) is the potential due to perturbing masses and P is any perturbative acceleration which is
not derived from a potential. -

Equation (2.1) can be linearized (except for the perturbation) in three steps:

STEP (1) Change the independent variable from time (t) to fictitious time (s) according to the transfor-
mation

& - 24)
The derivatives of r with respect to t become
F=rir (2.5)
where () = ﬂd;‘l' and
r= I” /r?- Ll"' /r3 (2.6)
where
r'=£ -L'Ir 2.7

STEP (2) Embed the integral called the Laplace vector (a constant when £ =0)

£= ﬁ[[z -L']L - [L’ L]L] -rir (2.8)

g= _ul_z[[ﬂ : L']L - [L’ : 1]:] ~rir 2.9)

when the new independent variable s is used.

which becomes

STEP (3) Embed the energy integral (a constant when F=0)

ak=2’{i__;_.£' 2.10)
which becomes
=21y @.11)
r r -

when the new independent variable is used. Note that
o =2 h 2.12)
where h; is the two-body or Keplerian energy. Using these three steps in order, equation (2.1) becomes
r +our =—pe+riF (2.13)

which is the differential equation for the position vector r. By taking the dot product of equation
(2.13) with the position vector r we obtain

r'+our=p+rr-F (2.14)

which is the differential equation for the distance r. We now change from the energy integral o, to
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the Jacobian integral o, (Bond and Gottlieb (1989)) which is given by

oy =0y +20-2V(r,1) (2.15)
where o is called the axial element and is defined by
G=w-(r xF) (2.16)

The vector @ is the constant rotational rate of the central attracting body or orbital rate of a third body
giving rise to the perturbing potential V(r,?). In Section 4.0 it will be shown that oy = constant
when /P/ = 0 and that ¢ = constant when /w/ = 0. Solving equation (2.15) for o, and substituting into
equations (2.13) and (2.14) we obtain

FHoyr=-pe+rF + 200 -V(r,t)r=-pe+Q (2.17)
and ,

r”+a,r=u+r5~5+2(0—V(5,z))r=u+}Q-5 2.18)
Note that all of the perturbation terms have been moved to the right side in equation (2.17) and (2.18).

Equation (2.17) and (2.18) are coupled only through the perturbation terms. We will refer to equation
(2.17) as the spatial differential equation since its solution provides position and velocity. We will refer
to equation (2.18) along with equation (2.4) as the temporal differential equations since their solutions
provide time, Note that when there are no perturbations (that is /F/ =0 and /o = 0) then we have the
two-body differential equations

r+oyr=-pe (2.19)
and

r’+or=p (2.20)
and the Jacobi constant and Keplerian energy become the same

oy =0y

3.0 Two Body Solution

The differential equation of motion for the two-body problem in the fictitious time was shown in the
previous section to be

r+oyr=-—pe (3.1
The solution of (3.1) in terms of the Stumpff functions of Appendix B is
r=r,c, + :‘,'scl - ut_',szcz (3.2)

where 7, and 5,’ are the i,nitiél values of r and ;_', and the Stumpff functions are ¢; = ¢;(0,5%). This
can be verified by direct substitution of (3.2) into (3.1) and using the derivatives of the Stumpff func-
tions ,

Co == 0y5C,
s¢i +¢,=¢, (3.3)
5Cy +2c,=10;

The first derivative of (3.2) which is the "velocity” in the fictitious time is
r'==(oyr, + ue)sc, +r,c, (34)

In place of pg which is a constant of the motion we define the constant "delta vector”
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3=-0oyr, - UE (3.5)
Now using the Stumpff function identity
C, + aJSZCZ =1 . (36)

and equation (3.5) and (3.2) we obtain

r=r, +r,5c;+ 8%, A (CN)]
similarly equation (3.4) becomes
r'=r,c, + 8sc (3.8)

The differential equation of motion for the distance r was shown in the previous section to be

rryoyr=p 3.9
The solution of equation (3.9) is similar to that for (3.1). In terms of Stumpff functions the distance is
r=r,c, +r,5¢; + Wy ' (3.10)
and its derivative is
r= (- r,0p)scy + 7,c, (3.11)
Now define the constant
Y=H-T,0 (3.12)

which we substitute for | in equation (3.10) along with the identity of equation (3.6) to obtain

Fo=r, +r5C, + Y53y (3.13)
Similarly equation (3.1) becomes

r'=r,c, + Y5, _ (3.14)
Now substitute equation (3.13) for r in the independent variable transformation, equation (2.4), to
obtain

dt =r,ds +r,sc,ds +Ys%c, ds (3.15)
Now use the integration formula

Is"‘c,,, ds = 5™

which is from Appendix B to obtain the equation for time (Kepler's equation),

[ =1, + 7,8 +T,5%+ Y%y (3.16)
where ¢, is the initial time.
The integration constants which were introduced in this section are 7, T\ Tos Tasi,. The new constant
& simply replaces the Laplace vector which is a constant of two-body motion through the definition
(3.5). Similarly we note that the constant ¥y replaces the gravitational constant (equation (3.12)). The
introduction of the constants § and y was done by Burdet (1968). This fact was noted by Bond and
Hanssen (1973). The Jacobian element oy is the same as the two-body energy parameter ¢ in the

unperturbed case is also a constant of the motion. In addition we have the axial element ¢ which is
also a constant of the motion (see equation 2.16). This is a total of 15 constants of the motion.

The constants r,,r, and § will be treated as orbital elements associated with the spatial differential

equation (2.17) and r,, r.. ¥, 1, will be treated as orbital elements associated with the temporal
differential equations (2.4) and (2.18). ‘
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4.0 The Differential Equations For The Elements

When perturbations are present the elements are no longer constant. First we derive the differential
equation for the axial element . Differentiate equation (2.16) with respect to time and substitute equa-
tion (2.1) and (2.3) to obtain

6=g-(5xf)=9-_r_xf=g-£x{£—aa—rV(l,z)] .1

now use equation (2.4) to change to fictitious time

G =ro-rx {g - %V(:, z)] 42)

Clearly @ = constant when /w/ = 0. Now we derive the differential equation for the Jacobian element
ay. Differentiate equation (2.15) with respect to time to obtain

= 25— 2| 2 .2
a; =0; +26 2[atV(5,t)+£ aLV(;,:)]

From equations (2.10) and (2.1)

—

. . dJ
Gy = - 2F [I_’ - 5-V(r, :)]
and from Bond and Mulcihy (1988) also Bond and Gottlicb (1989)
0 d
5 (L)=-0 rx aLV(:,t)

and from equation (4.1) the expression for ¢&; becomes

a;=2(-r+0xr)-P 4.3)
Now use equation (2.4) to change to fictitious time
a =2 +roxr)-P @4)

Note that o; = constant when /P/=0. The Jacobian constant o, will be treated as an orbital element
for both the spatial and temporal equations since o, appears in the two-body equations (2.19) and
(2.20). Even though we have already obtained the differential equation for o, (equation (4.4)) we must
include it in the variation of parameters procedures of the spatial and temporal equations. The axial
element ¢ appears only as a perturbation in equations (2.17) and (2.18). We have also obtained the
differential equation for ¢ (equation (4.2)). We will include & in the variation of parameters procedure
for convenience and completeness.

Even though the Laplace vector will be eliminated as an element we will need the derivative of the
Laplace vector as a perturbation. This derivative as found by differentiating equation (2.8) will respect
to time, then using equation (2.1) to eliminate 7, and finally using equation (2.4) to obtain

HE =2 B - @ E)X - OF 44
4.1 Spatial Elements

Now we apply the variation of parameters method of Lagrange to equations (2.17), (4.2) and (4.4).
Define ,

=
1]
I~

1=

()
1]

1~

X3=~0;r — UE = —XgX; — 4.5)

A3
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X3=0
X5 = (1_] . .
Now differentiate equations (4.5) and use (2.17), (4.2) and (4.4) to obtain
X =1
X2=x3+Q =23+G>
X3 =—xsxy— (0yr + ug) = - x5x2+ G3 4.6)
x4 =0 =G, -
x5 = 0y = Gs

Where G, = 0. Equations (4.6) can be separated into unperthrbed (i.e., tiwo-body or Keplerian) and per-
turbed parts, that is into the form of x = F + G, making them suitable for Lagrange’s variation of
parameters method as given by Appendix A. In this form equation (4.6) becomes

() 4 A

% X2 G
’_‘é X3 G,
x3| = |~xsxa| + [G3 @7
x4 0 G,
I;J L 0 J \GSJ

where Gy, G, G3, G4, G5 are defined from equation's 4.6). The afray of constants, which will become
the new dependent variables, is defined as

cT=@,p" 8, 0 0y) (4.8)
where
a=r, =x0) o
B=r, =220 - @4.9)
8§ =-o0,0- pe = x3(0)

and of course ¢ and o, which have already been established as constants of the motion. The

differential equation for ¢, has the form, —g—i-g' =G where

—— e e e

do 9 08 do duy
Iz 9 Oxp Ox 9%

d« op 05 9o doy
ox ox3 0x3 Ox3 ‘a.ia dx3

>3 B % 90 (4.10)
oxy; Ox, Oxg Oxgq Ox4
%@ 0B %8 90 doy
dxs Oxs Oxs Oxs OXs
% B B oo dos
Noting from Section (3.0) that
xy=r =o+PBscy + 3%, @.11)
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and from equation (3.5), (4.5) and (4.9)
x3=0;@-r)+8

also
X4=0C (4.12)
Xs5=0y

The differential equations become

- ]
I Isc; Is%, 0 or

aa,
or [ ()
[0] I, Isc;, 0 —— ||« Gy
= day ||=,
ox B G
[0 ~Taysc, I, 0 si 8| =G, 4.13)
o| |6
oot 0ol
-(_)T QT QT 0 1 \ JJ \ 54

where we have used the identity from Appendix B

co=1-o0y5%,
also, 7 is the 3 by 3 identity matrix; [0] is the 3 by 3 null matrix; 0 is a column vector with 3 com-
ponents; QT is a row vector with 3 components. Equation (4.13) yields the equations

’ s ’ » ar
a +Bscy +8s%,+ oy =
= = day
or’

ﬁ'c, + §'scl + a}soT =
7

4.19)

. , ,a£3 , ’
—E(XJSC1+§CO +a,§a—-=—a,,£—u§_
J
O =ro-rxF
o =2-r +r@xr)-P

where we have restored the original notations for G, G2, G3, G4, Gs. Now using the partial deriva-
tives,

or ac] 2 862

ooy =Bs doy 8 ooy
or’ aco dcy
= + 4.1
aa, E an o an ( 5)
< IR '
aa] - = I aaj
where the Stumpff function derivatives are
oc, 1,
=— = 4.15a
aa] 2 s ( )

2 oL k), k1
2, - 20, (i1 —key) , k2

and other Stumpff function identities from Appendix B equation (4.14) can be solved simultaneously,
omitting several algebraic steps to give
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o =~ QOscy — pEstc, - oy [gszcz +2Bs%, + %_@_55402?}
B'=Qc, + uesc, + 0‘1'[9501 + Bs%2, - 85°(285 ~ CIC?-)]

8 =Qaysc, - pec, + oy |i— oc, + 20yBs%8, + %§a,s4c22} 4.16)

where &, = ¢;(4a,5?) as discussed in Appendix B. In the reference Bond and Gottlieb (1989) the
coefficient of the factor a;@ in the differential equation for B had a secular term. This term does not
appear in equation (4.16). Note that the Laplace vector (ug) has been entirely removed from the formu-
lation. The derivative of the Laplace vector (ug') remains but only as an abbreviation for the perturba-
tions given in equation (4.4a). '

4.2 Temporal Elements

Now we apply Lagrange’s variation of parameters method to equations (2.18), (2.4) and (4.4). Define

n=r

Y2=”

Ya=p-0yr , 4.17)
Ya=1t

Ys =0y

Note that o, is the only element which is common to both the spatial and temporal systems. Now
differentiate equations (4.17) equation (2.18), (2.4), and (4.4) become

Y1 =Y2

, 1
y2=y3+ 72 "T=Y3+ 82

Y3 =-—Y¥2— 0T =—Ysy2 + &3 (4.18)
)’; =M
)‘§ = 0!} =&s

Where g, = 0 and g4 = 0. Equation (4.18) can also be expressed in the form y=f+g

r 3 roN

¥t ¥2 &1
¥2 y3 82

yi| = [-ysya| + |83 (4.19)
yi b4 84
ys| L O ) (&

.

where g, g2, 83, 84, &5 are defined by equation (4.18). The array of constants which will become the
new dependent variables are

X =(a,b,7 1, 0) (4.20)
where

a=r, =y1(0)
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b=r, =yy)0)
Y=H-0ya =y;0)
T=1, =y40)

. and a; has already been established as a constant of the motion.

ok =

The differential equations for x (having the form Qxx’ =

g ) becomes

Y Wy
da odb dy oIt Iy
D2 W2 2 W2 Oy
da db dy ot Oduy
W3 93 s s s
da ob dy dJt ooy
Da Da s B dya
da odb oy oJt oy
s s Oys s s
da ob dy o ooy
but from equations (3.12), (3.13), (3.14), (3.15) and (4.21)
Yi=r=a +bsc,+ v,
ya=r =bc, +ys¢,
Ys=H-oyr=y+oua -oayr=y+oya@-r)
Ya=t =T+as +bsic, + 5%,
Ys=0oy
So we can evaluate the matrix elements in (4.22) to obtain
1 s¢; 5%, 0 aaTr
J
0 ¢ sci O ;Tr a
IR
ay3 b,
0 -oysc; ¢, O E— Y
T
5 5%y s%; 1 o oy
2 3 aaj \ JJ
0 0 0 0 1 |
Equation (4.24) when expanded yields,
’ ’ » ’ ar
a +b'scy +ys¥cr+ym— =0
i 2 J an
’ , . or 1
bc, +ysc, +ajaal = rQ
’ ’ ’ ay3 ’
-boysc, + e, + ajm =-roy
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&2
&3
84

83)

g1

&s)

.

81
82
§3
84

@.21)

4.22)

4.23)

(4.24)

4.25)



’ ’ ’ ’ a
a's +b's¥kc, +yskcy+1 +a,a——=0
oLy

oy=2-r +raoxr) P

Where we have restored the original notations for g, g3 and gs. We evaluate the partial derivatives in
equations (4.25) using equations (4.23)

or dcy ,9C2

an =bs an e an

or ac, ac,

= 4.2

8(!, b aa_[ +¥ an ( 6)
s _ a0

0y 7 90,
202 306

il PRl oy

where the Stumpff function derivatives are given by equations (4.15a). Equations (4.25) can be solved
simultaneously for the derivatives,

’

a

%r - Qscy — oy [aszcz + 2bs3E 4 + %ys“cz{l

~

- Qc, + 0y [asc1 + bs28, - 5322 3—c,c2)] (4.27)

o

Il
~ |
i~

=<,
1

N |-
i~

. 1
-Qoyscy + a,[— aco + 2boys3cs + iyu,s“czz]

T = %I_ QS ca+ ou[as ca3+ bs 6‘2 2755(65—465)]

As in the development of equations (4.16) the Stumpff function identities of Appendlx B have been
used. In the reference Bond and Gottieb (1989) the coefficient of the factor oya in the differential
equation for b had a secular term. This term does not appear in equation (4.27).
1t is useful to note that
H=Y+oya (4.28)
is an integral of the system of equations (4.27). From equations (4.27) it is easy to show that
Y+aoa, +ao; =0 (4.29)
which can be integrated to give
Y+ aoy = constant (4.30)

By comparison of equation (4.30) to equation (4.21) the constant of integration is the gravitational con-
stant p. Therefore it is not necessary to compute Y from its differential equation. We can compute ¥
from equation (4.28),

Y=UL-0ya (4.31)

5.0 Minimization Of Perturbations

The variation of parameters approach is not dependent on the magnitude of the perturbation. No
assumption on the size of the perturbation is required in order that the method be rigorous. However,
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small perturbations enhance the efficiency, speed, and accuracy of any perturbation method. In the
method described in this paper, the embedding of the Jacobi integral has the effect of introducing a per-
turbation parameter /@/ that is the rotational speed of the planet, or the mean motion of the perturbing
third body. To prevent this perturbation from becoming too large the following modification is offered:
Let,

o=0, + AC .1

where ©, is the initial value of o and Ao is the change in 6. In effect we can let AG replace o so that
the differential equations reflect only changes in . Substitute equation (5.1) into equation (2.17) to
obtain

rr+oyr=-pe+r¥F + 20, + Ao - V(r, )

Now since G, is constant we can move it to the left side of this differential equation to get

I+ oy - 20, =—-pe+r¥F +2(Ac - V(r, t))r (52)
Similarly equation (2.18) becomes
r'+(oy ~20,)r =p+rmr - F+2Ac-V(r, ) (5.3)

This change does not affect the outcome of the variation of parameters approach taken here. This
change is only a computational convenience and is in effect in the computational procedure of Section
6.1 where the element a; is actually o; — 20, and 6 is actually As. Note that the initial value of Ao
is

Ao =0 54

6.0 Application

In this section the most important equations are collected and listed in a logical order suitable for com-
putation. Also two numerical examples are presented.

6.1 Computational Procedure

Givenr,, v,, 1, findr(¢) and v (¢).

STEP 1 Initialization
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Y=H-oa

c=0

STEP 2 Transform Elements to Coordinates

r=a+psc, + 8%,

_r_'_’=ﬁc,+55c,
£3=QJ@—7)+8
Y=U-0;a

r=a +bsc, +yk;

~ e
]
~
S
~

r =bc, + Ysc,

t=t+as +bs’c,+yscs

STEP 3 Evaluate Differential Equations For The Elements

Q=rF +2(-V +0)
oy =2(-r +r@xr) P

~

== B+ G W+ T -

-]

7,

ME=2@ F-( Fx - rF

. . . |
o =— Qscy — pesic, — oy |as?c, + 2Bs%q + 3_5_34622]

B = Qc, + uesc, + oy [_qsc, + Ps%e, - 85225 - c,c;)]

§’ =Qayscy - u.g_'c, + a,; l:— ac, + 2&1&8353 + %§a,s"c22]

’

o'=ra-rxE

a =- -,1'—5 - Qsey = 0y [w’cz +2bs3%, + —21-754022]

b = 15 - Qe, + 0y [asc, + bs%, - 7s3(2?53—0102)]

1 ’
T=r - Qs%cy + oylas’cy +

‘Qoyscy + a}[— aco+2boy sty + %m,s‘czz] (optional )

%bs‘czz — 2ys%(c 542 5)]

~ STEP 4 Numerically Integrate Over As To Obtain Elements At s + As
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sF=5+As

Go back to step 2.

6.2 Numerical Applications

The equations of the BG14 § element method given above in Section 6.1 were programmed as nearly as
possible in the same format as the older BG14 € method (Bond and Gottlieb, 1989). The two methods
were then compared to reference cases. The RK45 numerical method (Fehiberg, 1969) was used as the
numerical integration method in both examples.

6.2.1 Example 1

The first example is that of a highly eccentric (¢ = 0.95) orbit about the Earth. The orbit is subject to
the J, (Earth oblateness) perturbing potential, which is conservative, plus lunar perturbations. This
orbit was computed by both BG14 § and BG14 ¢ methods. This example was also computed by Stiefel
and Scheifele (1971) with extremcly high precision and will be used as the reference. Table I shows
the components of the position vector in Cartesian coordinates as computed by each method after 50
revolutions of the satellite. It is seen that both methods compare very closely with the reference but the
new BG14 & method being slightly closer to the reference.

The problem description for the first example is:
Coordinate system: X and Y fixed in Earth equatorial plane; Z perpendicular to Earth equatorial plane.

Initial conditions:

Initial State Vector
Position 0.0 -5888.9727 -3400.0 km
Velocity 10.691338 0.0 0.0 km/sec

The time of comparison is at 288.12768941 déys, after 'approximately 50 revolutions.

TABLE I - Comparison of BG14 § and BG14 ¢ Methods
Final Value Of Position Vector
Method X (km) Y (km) Z (km) Steps/Rev

(Avg)

REFERENCE -24219.0503 | 227962.1064 | 129753.4424 500

Stiefel and Sheifele (1971)

BG14 (RK45 Fixed Step) -24218.8175 | 227961.9146 | 129753.3431 62

& Method

BG14 (RK45 Fixed Step) -24218.8069 | 227961.9186 | 129753.3344 62

€ Method

The Earth oblateness and lunar models used are somewhat idealized and are taken from Sdefel and
Scheifele (1971). These models are specified as follows:

The Earth oblateness perturbations were compared from the potential model

allz2 1
r2 3
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where
GE = 398601 km?isec? (gravitational constant of Earth)
a, = 6371.22 km (equatorial radius of Earth)
J,=1.08265x 107 (second harmonic of geopotential)
The lunar perturbation was computed from

P=-GM
- Ir-af  p’

r—-a a
__~+*]

and the lunar ephemeris is approximated by

a, = p sin Q¢

a,=-i2§-pcosnt

a,=—%pcosﬂt

p = 384400 km  (the Earth—Moon distance)
Q = 2.665315780887 x 1078 rad/sec (Moon orbital rate)
GM = 4902.66 km¥sec? (gravitational constant of Moon)

6.2.2 Example 2

The second example (Adamo, 1989) is that of a near circular geocentric satellite orbit numerically
integrated by the BG14 § method from an initial altitude of 300 km down to entry interface altitude of
123.278 km (66.565 nautical miles). The perturbations considered were the Jacchia 1970 atmospheric
model and the GEM-10 (Lerch, 1979) geopotential restricted to second order and degree. The time of
flight was about 29.736111 days and the ballistic number was 78.606675 kg/m?. This case failed at an
altitude of approximately 135 km (72.894 nautical miles) with the older BG14 £ method.

Coordinate System: True Equator and Greenwich Meridian Of Epoch

Initial conditions:

Initial State Vector at UT1 = 0 on 3 September 1991.
Position 6677832.962 -62810.44513 -27301.63472 m
Velocity 78.98607579 6821.102837 3626.863958 m/sec

TABLE 11 - Comparison of BG14 § and BG14 ¢ Methods
Final Value Of Position Vector
Method X (m) Y (m) Z (m) Steps/Rev
(Avg)

BG14 (RK45 Variable Step) | 26648372 | -5838760.8 | 1033865.4 29
& Method

BG14 (RK45 Variable Step) | FAILED FAILED FAILED -
€ Method

Additional stress cases (not shown) have been computed in which the solution was propagated down to
the surface of the Earth (assuming no change in atmospheric density below 90 km).
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1.0 Final Comments

Recent numerical studies on atmospheric entry from near circular orbits and on low thrust in near circu-
lar orbits exhibit numerical instability when solved by the method of Bond and Gottlieb (1989) for long
time intervals. These two cases are similar since both have persistent, tangential, non-conservative per-
turbations. It was found that this instability was due to secular terms which appear on the right hand
sides of the differential equations of some of the elements. In this paper this instability is removed by
the introduction of another vector integral of the motion and another scalar integral which remove the
secular terms. The introduction of these new integrals require a new derivation of the differential equa-
tions for most of the elements. For this rederivation the Lagrange method of variation of parameters is
used making the development more concise.
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Appendix A - The Variation Of Parameters Method Of Lagrange

Assume that we have a mechanical system given by

i=f(x.1) A1
where

2= 1)

7= f»)

and ¢ is the independent variable.

We also assume that the solution of the system of equations (A1) is possible and can be
expressed

x=x(." (A2)
where the integration constants, or parameters, are given by
cT=(cr - ch) (A3)
Now consider another system similar to the system (Al),
x=f@x 0)+gk&, 1) (A4)
where the new term is called a perturbation and is given by
8T )= 8a) (AS)

The objective is to make the solution, equation (A2) of the system (A1), valid for the perturbed
system (A4) by allowing the parameter ¢ to be a function of the independent variable. In other
words the solution (A2) still applies but with the constant (¢c) replaced by the function ( c(t)).
So we have

x=x(@),1) (A6)
Now take the total derivative of equation (A6)
. oOx.  oOx
= 99X °x A7
253 A7
Also take the total derivative of (A2) and use (A1) to obtain
E_i=r@o (A8)

Note we have used the fact that for unperturbed case the total and partial derivatives of x are the

same. Using equation (A8) we can eliminate the partial derivative %f from equation (A7)
obtaining,
i=$evi@n 49)
Now compare equation (A9) with equation (A4) to obtain
1= Ee [0 =L@ 0+ g& 1)

After the obvious cancellation

ox .

—( = Al10

a & g (A10)

where the matrix —gf is obtained from the solution, equation (A2). The matrix must be inverti-
ble. That is -
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DE T[Q-{] #0

dc
The system of differential equations for the parameter ¢ is therefore
-1
. dx
=]= All
o] .
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Appendix B - The Stumpff Functions

These functions are related to the trigonometric and hyperbolic functions. The general equation
for the nth Stumpff function is,

ca(z) = i(-l)"—‘i——— n=0,12,... (B1)

ford @k +n)t°

When these series are compared to the series of the trigonometric and hyperbolic functions, the
following relations exist:

c,(x)=cosx ,or c,(-x*) =coshx

sin x 2. _ Sinh x
c = ,or ci(x")y= ——
1(x?) . 1(=x%) "
1-cosx coshx -1
o) = —2E or eyt = L —
x x
x —sin x sinhx - x
cxY) = 55— ,or cyxH)=—F7— (B2)
x x
cosx - 1-2 coshx—1+x—2
N 2 N 2
ca(x%)y = A ,or C4(-x%) = 2

etc.

The following identities may also be easily verified:
¢, (2)? +2c,zy =1
Co(2)? — 2¢,(2)* = ¢, (42)
c,(2)? = 1 — 2z¢,(42) (B3)
c1(z) = 2c4(4z)
co(z)e1(z) = ¢,(42)
ciz) = c1(z)? = ¢a(2)c, (2)

The more general identities
1 i 1
Cs2(2) = ;C»n(z) + 2 calz) + ;Cn—l(z) , n>0 (B84)

and

Ca(2) + 20 fe) = =7 ®5)

are also valid.

The derivatives of these functions may be expressed as
dc,(z)

2z = Cp1(z) — nc,(z) , n>0 (B6)
and
dea(z) 1
22 = 2 [ncua®) - a2 ®7
A convenient integration formula is
[stcrtpsds = s**1cpu(ps?) (B8)
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